3.2.5 \(\int \cot ^3(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\) [105]

Optimal. Leaf size=151 \[ \frac {23 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{4 d}-\frac {4 \sqrt {2} a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {9 i a^2 \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {a^2 \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d} \]

[Out]

23/4*a^(5/2)*arctanh((a+I*a*tan(d*x+c))^(1/2)/a^(1/2))/d-4*a^(5/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2
)/a^(1/2))*2^(1/2)/d-9/4*I*a^2*cot(d*x+c)*(a+I*a*tan(d*x+c))^(1/2)/d-1/2*a^2*cot(d*x+c)^2*(a+I*a*tan(d*x+c))^(
1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.29, antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {3634, 3679, 3681, 3561, 212, 3680, 65, 214} \begin {gather*} \frac {23 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{4 d}-\frac {4 \sqrt {2} a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {a^2 \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {9 i a^2 \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^3*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(23*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/(4*d) - (4*Sqrt[2]*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c
 + d*x]]/(Sqrt[2]*Sqrt[a])])/d - (((9*I)/4)*a^2*Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d - (a^2*Cot[c + d*x]
^2*Sqrt[a + I*a*Tan[c + d*x]])/(2*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3634

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-a^2)*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x]
 + Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(b*c*(
m - 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /;
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && Lt
Q[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3679

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*
(n + 1)*(c^2 + d^2))), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3681

Int[(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(A*b + a*B)/(b*c + a*d), Int[(a + b*Tan[e + f*x])^m, x], x] - Dist[(B*c
 - A*d)/(b*c + a*d), Int[(a + b*Tan[e + f*x])^m*((a - b*Tan[e + f*x])/(c + d*Tan[e + f*x])), x], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps

\begin {align*} \int \cot ^3(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx &=-\frac {a^2 \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {1}{2} \int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \left (-\frac {9 i a^2}{2}+\frac {7}{2} a^2 \tan (c+d x)\right ) \, dx\\ &=-\frac {9 i a^2 \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {a^2 \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {\int \cot (c+d x) \sqrt {a+i a \tan (c+d x)} \left (\frac {23 a^3}{4}+\frac {9}{4} i a^3 \tan (c+d x)\right ) \, dx}{2 a}\\ &=-\frac {9 i a^2 \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {a^2 \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {1}{8} (23 a) \int \cot (c+d x) (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)} \, dx-\left (4 i a^2\right ) \int \sqrt {a+i a \tan (c+d x)} \, dx\\ &=-\frac {9 i a^2 \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {a^2 \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {\left (23 a^3\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{8 d}-\frac {\left (8 a^3\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac {4 \sqrt {2} a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {9 i a^2 \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {a^2 \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {\left (23 i a^2\right ) \text {Subst}\left (\int \frac {1}{i-\frac {i x^2}{a}} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{4 d}\\ &=\frac {23 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{4 d}-\frac {4 \sqrt {2} a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {9 i a^2 \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {a^2 \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.13, size = 182, normalized size = 1.21 \begin {gather*} -\frac {a^2 e^{-i (c+2 d x)} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \left (32 \sinh ^{-1}\left (e^{i (c+d x)}\right )-23 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {2} e^{i (c+d x)}}{\sqrt {1+e^{2 i (c+d x)}}}\right )+\sqrt {1+e^{2 i (c+d x)}} (9 i+2 \cot (c+d x)) \csc (c+d x)\right ) (\cos (d x)+i \sin (d x))}{4 \sqrt {2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^3*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

-1/4*(a^2*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*(32*ArcSinh[E^
(I*(c + d*x))] - 23*Sqrt[2]*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[1 + E^((2*I)*(c + d*x))]] + Sqrt[1 + E^((2*
I)*(c + d*x))]*(9*I + 2*Cot[c + d*x])*Csc[c + d*x])*(Cos[d*x] + I*Sin[d*x]))/(Sqrt[2]*d*E^(I*(c + 2*d*x)))

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 676 vs. \(2 (121 ) = 242\).
time = 0.83, size = 677, normalized size = 4.48

method result size
default \(\frac {\sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (32 i \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}+23 i \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-32 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}-32 i \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-23 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-23 i \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \sin \left (d x +c \right )+22 i \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+32 \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-18 i \cos \left (d x +c \right ) \sin \left (d x +c \right )+23 \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+22 \left (\cos ^{3}\left (d x +c \right )\right )-4 \left (\cos ^{2}\left (d x +c \right )\right )-18 \cos \left (d x +c \right )\right ) a^{2}}{8 d \left (-1+\cos \left (d x +c \right )\right ) \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) \left (1+\cos \left (d x +c \right )\right )}\) \(677\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^3*(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/8/d*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(32*I*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2
*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)+23*I*(-2*cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)^2*sin(d*x+c)-32*(-2*cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)^2*sin(d*x+c
)*2^(1/2)-32*I*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*s
in(d*x+c)*2^(1/2)-23*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-
cos(d*x+c)+1)/sin(d*x+c))*cos(d*x+c)^2*sin(d*x+c)-23*I*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*cos(d
*x+c)/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)+22*I*cos(d*x+c)^2*sin(d*x+c)+32*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-18*I*sin(d*x
+c)*cos(d*x+c)+23*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+22*cos(d*x+c)^3-4*cos(d*x+c)^2-18*cos(d*x+c))/(-1+cos(d*x+c))/(I*sin(d*x+c)+
cos(d*x+c)-1)/(1+cos(d*x+c))*a^2

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 181, normalized size = 1.20 \begin {gather*} \frac {{\left (16 \, \sqrt {2} \sqrt {a} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) - 23 \, \sqrt {a} \log \left (\frac {\sqrt {i \, a \tan \left (d x + c\right ) + a} - \sqrt {a}}{\sqrt {i \, a \tan \left (d x + c\right ) + a} + \sqrt {a}}\right ) + \frac {2 \, {\left (9 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} a - 7 \, \sqrt {i \, a \tan \left (d x + c\right ) + a} a^{2}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}\right )} a^{2}}{8 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/8*(16*sqrt(2)*sqrt(a)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*
x + c) + a))) - 23*sqrt(a)*log((sqrt(I*a*tan(d*x + c) + a) - sqrt(a))/(sqrt(I*a*tan(d*x + c) + a) + sqrt(a)))
+ 2*(9*(I*a*tan(d*x + c) + a)^(3/2)*a - 7*sqrt(I*a*tan(d*x + c) + a)*a^2)/((I*a*tan(d*x + c) + a)^2 - 2*(I*a*t
an(d*x + c) + a)*a + a^2))*a^2/d

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 558 vs. \(2 (116) = 232\).
time = 0.45, size = 558, normalized size = 3.70 \begin {gather*} -\frac {32 \, \sqrt {2} \sqrt {\frac {a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {4 \, {\left (a^{3} e^{\left (i \, d x + i \, c\right )} + \sqrt {\frac {a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{a^{2}}\right ) - 32 \, \sqrt {2} \sqrt {\frac {a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {4 \, {\left (a^{3} e^{\left (i \, d x + i \, c\right )} - \sqrt {\frac {a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{a^{2}}\right ) - 23 \, \sqrt {\frac {a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {16 \, {\left (3 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} + 2 \, \sqrt {2} \sqrt {\frac {a^{5}}{d^{2}}} {\left (d e^{\left (3 i \, d x + 3 i \, c\right )} + d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a}\right ) + 23 \, \sqrt {\frac {a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {16 \, {\left (3 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} - 2 \, \sqrt {2} \sqrt {\frac {a^{5}}{d^{2}}} {\left (d e^{\left (3 i \, d x + 3 i \, c\right )} + d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a}\right ) - 4 \, \sqrt {2} {\left (11 \, a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} + 4 \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} - 7 \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{16 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/16*(32*sqrt(2)*sqrt(a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log(4*(a^3*e^(I*d*x + I*
c) + sqrt(a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/a^2) - 32*s
qrt(2)*sqrt(a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log(4*(a^3*e^(I*d*x + I*c) - sqrt(a
^5/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/a^2) - 23*sqrt(a^5/d^2
)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log(16*(3*a^3*e^(2*I*d*x + 2*I*c) + a^3 + 2*sqrt(2)*sq
rt(a^5/d^2)*(d*e^(3*I*d*x + 3*I*c) + d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c
)/a) + 23*sqrt(a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log(16*(3*a^3*e^(2*I*d*x + 2*I*c
) + a^3 - 2*sqrt(2)*sqrt(a^5/d^2)*(d*e^(3*I*d*x + 3*I*c) + d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)
))*e^(-2*I*d*x - 2*I*c)/a) - 4*sqrt(2)*(11*a^2*e^(5*I*d*x + 5*I*c) + 4*a^2*e^(3*I*d*x + 3*I*c) - 7*a^2*e^(I*d*
x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**3*(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)*cot(d*x + c)^3, x)

________________________________________________________________________________________

Mupad [B]
time = 4.00, size = 139, normalized size = 0.92 \begin {gather*} -\frac {\mathrm {atan}\left (\frac {\sqrt {a^5}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}\,1{}\mathrm {i}}{a^3}\right )\,\sqrt {a^5}\,23{}\mathrm {i}}{4\,d}+\frac {7\,a^2\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{4\,d\,{\mathrm {tan}\left (c+d\,x\right )}^2}-\frac {9\,a\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{4\,d\,{\mathrm {tan}\left (c+d\,x\right )}^2}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {a^5}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2\,a^3}\right )\,\sqrt {a^5}\,4{}\mathrm {i}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^3*(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

(7*a^2*(a + a*tan(c + d*x)*1i)^(1/2))/(4*d*tan(c + d*x)^2) - (atan(((a^5)^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2)*
1i)/a^3)*(a^5)^(1/2)*23i)/(4*d) - (9*a*(a + a*tan(c + d*x)*1i)^(3/2))/(4*d*tan(c + d*x)^2) + (2^(1/2)*atan((2^
(1/2)*(a^5)^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2)*1i)/(2*a^3))*(a^5)^(1/2)*4i)/d

________________________________________________________________________________________